Voltage-Gated Calcium Channels

Gerald W. Zamponi, Ph.D.
Department of Physiology and Biophysics
University of Calgary
Calgary, Alberta, Canada
CONTENTS

Preface ... xiv

1. Ca\(^{2+}\) Chemistry, Storage and Transport in Biologic Systems:
 An Overview ... 1
 Tashi G. Kinjo and Paul P.M. Schnetkamp
 Why Ca\(^{2+}\): Unique Chemical and Physical Features .. 1
 Ca\(^{2+}\) Evolution: A Rejection from Cytoplasm ... 2
 Ca\(^{2+}\) Signaling and Storage: The Endoplasmic Recticulum ... 2
 The Role of Ca\(^{2+}\) within the ER ... 3
 ER Heterogeneity: Ca\(^{2+}\) Tunneling Versus Ca\(^{2+}\) Compartmentalization 3
 Ca\(^{2+}\) Signaling and Storage: Mitochondria ... 4
 Mitochondrial Ca\(^{2+}\): Uptake Function and Effects ... 4
 Ca\(^{2+}\) Buffering: Cytosolic and Lumenal ... 5
 Channels that Lead to an Increase in Cytosolic Ca\(^{2+}\) .. 5
 Intracellular Ca\(^{2+}\) Release Channels ... 6
 Plasma Membrane Ca\(^{2+}\) Channels ... 7
 Cyclic Nucleotide-Gated Channels .. 7
 P2X Receptors .. 7
 SOCE and the TRP Gene Family ... 8
 Mechanisms of Store-Operated Ca\(^{2+}\) Entry ... 8
 Mechanisms to Lower Cytosolic Ca\(^{2+}\) .. 8
 PMCA Gene Family ... 9
 SERCA Gene Family ... 9
 NCX Gene Family ... 9
 NCKX Gene Family ... 9

2. Monitoring Intracellular Ca\(^{2+}\) in Brain Slices with Fluorescent Indicators 12
 Sean J. Mulligan and Brian A. MacVicar
 Ca\(^{2+}\) Sensitive Fluorescent Chemical Indicators ... 12
 Single-Wavelength Probes .. 13
 Dual-Wavelength Ratiometric Probes .. 15
 Ca\(^{2+}\) Binding Affinity ... 16
 Ca\(^{2+}\) Indicator Form .. 18
 Dextran Conjugates .. 18
 AM-Esters ... 20
 Quantitative Measurement of [Ca\(^{2+}\)] ... 21

3. A Brief History of Calcium Channel Discovery ... 27
 Richard W. Tsien and Curtis F. Barrett
 The Key Role of Ca\(^{2+}\) Channels in Cellular Signaling ... 27
 The Winding Road of Calcium Channel Discovery ... 30
 The Diversity of Native Ca\(^{2+}\) Channel Currents .. 36
4. Biochemical Studies of Voltage-Gated Ca2+ Channels 48
 William A. Catterall
 Purification and Biochemical Characterization
 of Skeletal Muscle Ca2+ Channels 48
 Biochemical Properties of Other Ca\textsubscript{4,1} Channels 53
 Biochemical Properties of the Ca\textsubscript{2,2} Family of Ca2+ Channels 54
 Interactions of Ca2+ Channels with Intracellular Regulatory
 Proteins 55

5. Molecular Properties of Voltage-Gated Calcium Channels 61
 Terrance P. Snutch, Jean Peloquin, Eleanor Mathews
 and John E. McRory
 Native Voltage-Gated Ca2+ Channels 61
 High Voltage-Activated Ca2+ Channels 61
 Cloned Calcium Channels ... 66
 Low Voltage-Activated (T-Type) Channels 77
 Auxiliary Ca2+ Channel Subunits 79

6. Role of \(\beta \) Subunits in Voltage-Gated Calcium Channel Functions 95
 Thierry Cens, Sophie Restituito, Matthieu Rousset and Pierre Charnet
 Isolation, Characterization and Cloning 95
 Association with Ca2+ Channels 97
 Role in Channel Expression and Targeting 98
 Role in Channel Properties: Activation, Inactivation
 and Facilitation .. 99
 Role in Channel Regulation by Heterotrimeric G-Proteins 103

7. Distribution and Targeting Mechanisms of Voltage Activated
 Ca2+ Channels ... 113
 Stefan Herlitze and Melanie D. Mark
 Distribution of Ca2+ Channel Types Specified by Their Pore
 Forming \(\alpha \) Subunit ... 113
 Distribution of L-Type Channels 113
 Distribution of P/Q-, N- and R-Type Channels 116
 Ca\textsubscript{2,2} in Pancreas 121
 Distribution of T-Type Channels 121
 Distributions of the Ancillary Subunits \(\beta, \alpha_2\delta \) and \(\gamma \) 122
 Mechanisms of Ca2+ Channel Targeting: Transport from the ER
 to the Plasma Membrane and Specified Subcellular Structures 125
 Ca2+ Channel Complex Formation in Heterologous Expression
 Systems ... 125
 Up and Down Regulation of Ca2+ Channel Expression:
 \(\beta \) Subunits, \(\gamma \) Subunits, AKAP and kir/Gem 127
 Targeting of Ca2+ Channels in Skeletal and Cardiac Muscle 128
 Sorting of Ca2+ Channels in Polarized Cells: A Correlation
 between Polarized Sorting in Epithelial Cells and Neurons 129
8. The Calcium Channel and the Transmitter Release Site .. 141
 Elise F. Stanley and Allen W. Chan
 Background .. 141
 Presynaptic Ca^{2+} Channel Types .. 142
 Ca^{2+} Channel Localization at the Presynaptic Nerve Terminal 143
 The Calcium Channel and the Triggering of Transmitter Release 144
 Calcium Channel Interaction with the Proteins
 of the Transmitter Release Site .. 146
 Modulation of Presynaptic Ca^{2+} Channels .. 148

9. Determinants of G Protein Inhibition of Presynaptic Calcium Channels 154
 Aparna Nirdosh and Gerald W. Zamponi
 Functional Consequences of Direct G Protein Action
 on Calcium Channels ... 155
 Stoichiometry between G Proteins and the Calcium Channel 156
 G Protein Modulation Depends on the Nature
 of the Calcium Channel Subunits ... 157
 GB Subunits Mediate Calcium Channel Inhibition ... 157
 Channel and G Protein Structural Basis of G Protein Modulation 158
 Interactions between G Protein and Protein Kinase C
 (PKC) Pathways .. 159
 RGS Proteins and G Protein Modulation of Calcium Channels 160
 Interactions between G Proteins and Synaptic Release Proteins 160

10. Phosphorylation-Dependent Regulation of Voltage-Gated
 Ca^{2+} Channels .. 168
 Roger A. Bannister, Ulises Meza and Brett A. Adams
 Regulation of Ca^{2+} Channels by Protein Kinase A (PKA) 168
 Regulation of Ca^{2+} Channels by Protein Kinase C (PKC) 171
 Regulation of Ca^{2+} Channels by Protein Kinase G (PKG) 172
 Regulation of T-Type Ca^{2+} Channels by Ca^{2+}/Calmodulin-
 Dependent Protein Kinases (CaM Kinases) .. 172
 Regulation of Ca^{2+} Channels by Tyrosine Kinases 173
 Regulation of Ca^{2+} Channels by Mitogen-Activated Protein
 (MAP) Kinases .. 174
 Regulation of Ca^{2+} Channels by Lipid Kinases ... 175
 Regulation of Ca^{2+} Channels by Cyclin-Dependent Kinase
 5 (Cdk5) ... 176
 Regulation of Ca^{2+} Channels by Calcineurin .. 176
11. Ca\(^{2+}\)-Dependent Modulation of Voltage-Gated Ca\(^{2+}\) Channels

Amy Lee and William A. Catterall

Feedback Regulation of VGCCs by Ca\(^{2+}\) in Paramecium and Aplysia

Ca\(^{2+}\)-Dependent Modulation of Ca\(_{\alpha}1.2\) (L-Type) Channels

Molecular Determinants of Ca\(^{2+}\)-Dependent Modulation in Ca\(_{\alpha}1.2\) Channels

Ca\(^{2+}\)-Dependent Regulation of Ca\(_{\alpha}2.1\) (P/Q-Type) Channels

Differential Modulation of Ca\(_{\alpha}2.1\) by CaM and Neuronal Ca\(^{2+}\)-Binding Proteins

12. Voltage-Dependent Inactivation of Voltage-Gated Calcium Channels

Mary T. An and Gerald W. Zamponi

What Have We Learnt from Other Types of Voltage-Gated Cation Channels?

\(\alpha_1\) Subunit Structural Inactivation Determinants in High Voltage Activated Channels

Role of Ancillary Subunits in Calcium Channel Inactivation

Possible Molecular Mechanism of Calcium Channel Inactivation

13. Selective Permeability of Voltage-Gated Calcium Channels

William A. Sather

Selectivity by Ion Binding Affinity

A Multi-Ion Pore Confers High Flux

Amino Acid Residues of the Selectivity Filter

A Single High-Affinity Locus

Non-Equivalence of EEEE Locus Glutamates

Functional Groups that Bind Ca\(^{2+}\)

Structure-Based Selectivity Models

14. The Run-Down Phenomenon of Ca\(^{2+}\) Channels

Klaus J.F. Keplinger and Christoph Romanin

Which Native Calcium Channel Types Exhibit Run-Down?

Prevention and Reversal of Channel Run-Down

The Nucleotides ATP and ADP

Regulation by Phosphorylation/Dephosphorylation

Is Calpastatin the Regulatory Protein in the Cytoplasm?

Molecular Determinants of Calpastatin in the Regulation of Calcium Channel Activity

Which Subunits of the L-Type Calcium Channel Are Involved in the Run-Down Process?

Molecular Determinants for Run-Down in the \(\alpha_1c\) Subunit

Summary of the Molecular Mechanisms and Determinants of Run-Down
15. Calcium Channels As Therapeutic Targets ... 231
 Francesco Belardetti and Sian Spacey
 L-Type Channels ... 231
 N-Type Channels .. 233
 P/Q-Type Channels ... 233
 T-Type Channels .. 235

16. Calcium Channelopathies .. 240
 Nancy M. Lorenzon and Kurt G. Beam
 Calcium Channelopathies of the Nervous System 240
 Calcium Channelopathies of Muscle 250

17. The Molecular Basis of Ca^{2+} Antagonist Drug Action-Recent Developments .. 262
 Jörg Striessnig, Jean-Charles Hoda, Edwin Wappler and Alexandra Koschak
 A Multisubsite Model of the Ca^{2+} Antagonist Drug Binding Domains ... 264
 Towards a Three-Dimensional Model of the DHP Binding Domain ... 266
 PAA and BTZ Binding Residues ... 275
 Differences in DHP Sensitivity between Ca_{1.2}, Ca_{1.3} and Ca_{1.4} L-Type Ca^{2+} Channels ... 275

18. Calcium Channel Block and Inactivation: Insights from Structure-Activity Studies ... 281
 Steffen Hering, Stanislav Sokolov, Stanislav Berjukow, Rainer Marksteiner, Eva Margreiter and Evgeni N. Timin
 Amino Acid Residues Located in the Putative Drug-Binding Region Affect Drug-Sensitivity and Channel Inactivation 284
 Drug-Sensitivity Is Affected by Inactivation Determinants Located Outside the Putative Drug-Binding Region 286
 β-Subunits Modulate Inactivation and Channel Inhibition 287
 Inactivation Determinants and DHP Sensitivity 287
 On the Role of Ca^{2+}-Dependent Inactivation in Drug Sensitivity 290
 Simulation of the Drug-Channel Interaction 290

19. Block of Voltage-Gated Calcium Channels by Peptide Toxins 294
 Christina I. Schroeder, Richard J. Lewis and David J. Adams
 L-Type VSCC Antagonists ... 295
 N-Type VSCC Antagonists ... 300
 P/Q-Type VSCC Antagonists ... 302
 R-Type VSCC Antagonists ... 303
 T-Type Antagonists ... 304
20. Calcium Channels in the Heart .. 309
 Stéphanie Barrère-Lemaire, Matteo E. Mangoni and Joël Nargeot
 I-Cardiac Ca\(^{2+}\) Channels in Working Myocardial Cells 309
 Cardiac Ca\(^{2+}\) Channels and Pacemaker Activity 315

21. Post-Genomic Insights into T-Type Calcium Channel
 Functions in Neurons ... 326
 Emmanuel Bourinet, Philippe Lory, Jean Chemin, Steve Dubel,
 Régis Lambert, Olivier Poirot, Arnaud Monteil, Anne Feltz
 and Joël Nargeot
 Contributions of Recombinant Channel Studies 327
 T-Type Channels and Neurophysiology ... 329

22. Voltage-Gated Ca\(^{2+}\) Channels of the Vertebrate Retina:
 From the Genetics of Blindness to Encoding the Visual World 334
 Melanie E.M. Kelly and Steven Barnes
 Ca\(^{2+}\) Channels in the Graded Potential Neurons
 of the Outer Retina .. 336
 Ca\(^{2+}\) Channel Subtypes in Spiking Cells of the Inner Retina 339
 Differential Expression of Ca\(^{2+}\) Channel Subtypes during
 Retinal Development ... 341

23. Exploring the Function and Pharmacotherapeutic of Potential
 Voltage-Gated Ca\(^{2+}\) Channels with Gene-Knockout Models 346
 Jörg Striessnig and Alexandra Koschak
 The Ca\(_{\alpha,1}\) (L-Type) Ca\(^{2+}\) Channel Family ... 348
 The Ca\(_{\alpha,2}\) (P/Q-, N- and R-Type) Ca\(^{2+}\) Channel Family 353
 The Ca\(_{\alpha,3}\) (T-Type) Ca\(^{2+}\) Channel Family .. 359
 Ca\(^{2+}\) Channel β-Subunits ... 362
 Other Subunits ... 364

Index ... 373
Voltage-gated calcium channels are essential mediators of a range of physiological functions, including the communication between nerve cells, the regulation of heart beat, muscle contraction, and secretion of hormones such as insulin. Consequently, these channels are critical pharmacological targets in the treatment of a variety of disorders, such as epilepsy, hypertension, and pain. Voltage-gated calcium channels have therefore been subject to intense study by numerous investigators over the past few decades, and an immense body of work has accumulated. In this book, we provide the first comprehensive overview of our current state of knowledge concerning this exciting field of research. Leading off with a general review of calcium signaling and techniques to measure calcium channel activity, the book delves into a provocative overview of the history of the calcium channel field, contributed by one of the key pioneers in the field, Dr. Richard Tsien. This is followed by an in depth review of the biochemical and molecular biological characterization of calcium channel genes by Drs. Catterall and Snutch whose research has resulted in major advances in the calcium channel field. A number of chapters are dedicated towards various aspects of calcium channel structure and function, including channel gating, permeation, modulation and interactions with members of the exocytotic machinery—contributed by both established leaders and rising stars in the field. The next series of chapters is concerned with pharmacological and physiological aspects of voltage-gated calcium channels including genetic diseases linked to calcium channel genes. The book concludes with an overview of the effects of targeted calcium channel gene disruption in mice.

Over the past two decades, considerable progress has been made in terms of understanding the molecular physiology of voltage-gated calcium channels, yet, the work is far from complete. Identification of novel small organic calcium channel inhibitors remains a key priority towards treating diseases linked to these channels, and only recently has the first crystal structure of a calcium channel subunit been solved. Over the next decade, one may expect that current knowledge about the molecular structure of calcium channels will be used to understand, in detail, the function of these channels in their native cellular environment and in human physiology, and my fellow contributors and I look forward to being part of this effort.

Gerald W. Zamponi, Ph.D.